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Engineering a deep-cycled MnO, electrode
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Turney; Yadav; Gallaway; et al, "Aqueous Mn-Zn and Ni-Zn Batteries for Sustainable Energy Storage." in Energy- 2
Sustainable Advanced Materials, 2021.
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Additives enable MnO, rechargeability College of Engineering
: MnO,, + Ford Motor Company, 1980s
MDBC: MnO, + + Cu City College of New York (CCNY), 2017
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2010-2015, City College of New York, ARPA-E Additives enable rechargeability

"Low-Cost Grid-Scale Electrical Storage Using a Flow-Assisted .

Rechargeable Zinc-Manganese Dioxide Battery" * BIi,0;5 allows MnO, to recharge

« Addition of Cu allows this to reach high
Yadav et al. Nature Comm., 8 (2017) 14424, cycle life at high mass loading.

~617 mAh/g (100% DOD)
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However: Challenges remain for implementation College of Engineering

1. The mechanism of both Bi and Cu MDBC: MnO, + + Cu
additives are unknown 0.7 — , , , , , ,
; Cell AA cycle 2
« Biis sometimes hypothesized to - L8 Egﬁi g
stabilize the MnO,, structure by acting Q 0.0 cellaa cyce 300
as a "molecular piIIar" L C:IIAA 3212 500
=] —-0.2¢f -
2. A single cathode active material is o
desired ; —0.47 | ‘_ LVvs. zn -
3. The Bi and Cu-doped MnO, B~ <z ‘_ 10-8Vvs.zn
= N\
eIecFrode undergoes volt.age Ic_)ss 3 _osl |
« Higher cathode voltage is desired for S
high energy density. —-1.0t | .
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Our goal is to solve #1
in order to engineer a solution to #2 and #3
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Proposed mechanism of MnO, cycling with Bi College of Engineering

: Proton insertion stage
6-(K,,Bi,)MnO, « wH,O First electron

[T 11 [TT17 -—-
oo el mb g jsie W dloas
/

. . ] Conversion
Bi cation pillars stage

Second electron

Mn(OH), ° ®
LT T T T T ) P
- ® ° o O _°
° . ° ® .0

8-MnO, + 2H,0 + 2e = Mn(OH), + 20H

® H K+ @ Bj3+ ‘ H,O . [MnOg¢] octahedron .
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Our 2021 and 2022 Tasks College of Engineering

Task 2: Reversible Intercalation in MnO, in non-aqueous systems
The effect of Bi pillaring on MnO,, cathode used for non-aqueous intercalation batteries
« Li-ion
 Na-ion "beyond Li-ion"

The all-Mn layered oxide cathode can lower the cost of these batteries and make them appropriate for
grid applications.

Nature of the Bi pillaring effect will be clarified through this study

Task 3: The effect of Bi in agueous MnO, systems
Deep science on agueous mechanism. Does Bi:
» Leave the MnO, structure as a hydrated [Bi(H,0),]** species
* Remain as a coordinated [BiO,] cluster
|dentifying this intermediate will elucidate underlying mechanism in the MnO,, system

Task 4: Structural effect of Bi doping in alkaline CuQO batteries
Collaboration with Timothy Lambert's group at SNL on Bi doping in Zn-CuO batteries
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Our 2021 and 2022 Tasks College of Engineering

Task 2: Reversible Intercalation in MnO, in non-aqueous systems

2.1: Structural and Morphological Effect of Bi Doping 2021
Accomplishments

2.2: lon Exchange Methods

.. : Complete in 2021
2.3: Li-ion Battery Cycling

2.4: Li-ion Battery Electrochemical Characterization

2.5: Li-ion Battery Operando X-ray Diffraction
2.6: Solid Electrolyte Li-ion Battery
2.7: Beyond Li-ion Cycling

Task 3: The effect of Bi in agueous MnO,, systems
3.1: Crystal structure changes during MnO, cycling in a wide range of d-spacings

3.2: MnO, operando spectroscopy Complete in 2021

3.3: MnO, structure modeling

Task 4: Structural effect of Bi doping in alkaline CuQO batteries

4.1: Operando EDXRD Complete in 2021 Remaining
4.2: Operando X-ray spectroscopy TaSkzsogrze for



Poster:
Kim MA and Gallaway JW, "Enabling stable Li-ion cycling of a Mn layered
oxide via Bi-doping."

Task 2: Reversible intercalation In
MnO, In non-aqueous systems
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e o
Layered MnO, Li-ion battery cathode College of Engineering
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Spinel manganese oxide (LMO) has low capacity and poor stability.

Layered manganese oxide has high theoretical capacity comparable to cobalt oxide.
» Cost of Co is high. Replacement with Mn would dramatically lower cost.

« Coisregionally locked. Mn is extremely widely available.

* Mnis less environmentally hazardous and less toxic

Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials Today 2015, 18 (5), 252-264.
Market Insider markets.businessinsider.com (accessed March 18, 2021)
Anderson, Don L.; "Chemical Composition of the Mantle", Theory of the Earth, pp. 147-175



Northeastern

Doped §-MnO, target material College of Engineering
[MnGg] slab 6-MnO, can be synthesized several ways
A
4 \ . .
o 6-MnO, is a layered oxide Resulting Material
[MnOg] octahedron where Mn is the primary Method
atom .. . Crvstallini Interlayer
transition metal. It is e
analogous to CoO,, the most D . Wet synthesis from Mn salts
Li-i batt Sol-gel synthesis Wet methods
common LI-1on battery Crystalline Mg? Autoclaved Mg(MnQy),

cathode. Crystalline K Fine powder KMnO, heated
y rystalline K+and Bi+ Fine powder KMnQ; + Bi(NO;);
g heated

S_Mnoz K*and Cu'* }

High temperature

Disordered K*and Mg?" Cation salt inserted in birnessite
K*and Bi***
Crystalline K" and Bi*** Cation salt inserted in birnessite

Cation exchange

We seek a
'‘permanent pillaring”
effect, whereby Bi3*
stabilizes the
material to allow
repeated Li* cycling.

We tried many methods to produce §-
MnO, with cations inserted into the
interlayer.

R aVat Padh|
PAVVAVAVA,

Cation |
i Bi* must help hold the layers together,
ol llar without hindering Li* transport.

/) The indicated high temperature method
produced crystalline material and
enabled the amount of Bi®* to be tuned.

10
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DOpEd 6-(KX,Biy)Mn02 " WHZO College of Engineering

Chemical formula of (K,Bi )MnO, » wH,0

« y w Chemical formula Mclblz:;_' ma:so We ha_lve produced_a series of |
(excluding H20) materials that vary in amount of Bi3*,
0.377 | 0.156 | 0.56 Ko.377Bi0.156MNO2 134.18 g/mol which is given by "y in the chemical
0.404 | 0.084 | 053 |  Ko.404BioossMnO2 120.31 g/mol formula.
0.384 | 0.043 | 0.52 Ko.384Bi0.043MNO2 110.87 g/mol All materials are h|gh|y Crysta”ine
0.365 | 0.018 | 052 |  KoaesBio.o1eMnO2 104.97 g/mol and therefore straightforward to
characterize.
0.332 | 0.013 | 0.40 Ko.332Bi0.013MnO2 102.63 g/mol
0.315 | 0.01 | 0.53 |  Kos1sBioo1oMnO2 101.29 g/mol Highery generally correlates to
higher x and w.
0.315 | 0.006 | 0.46 Ko.315Bi0.00sMnO2 100.58 g/mol
0.306 | 0.002 Ko.306Bi0.002MNnO2 99.36 g/mol
0.308 | 0.0 0.26 Ko.30sMnO2 98.97 g/mol Values for x and y from inductively coupled plasma (ICP).

Values for w from thermogravimetric analysis (TGA).

11



Li-ion battery cycling with Bi-pillared MnO,
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Li-ion half-cell results
iIn CR2032 format, C/10 rate
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Cycling results show that
Bi* successfully stabilizes
the material.

It is possible that Bi3*
stabilizes the material by
preventing conversion to
LiMn,O, spinel.

This is the most favorable
stabilization of layered MnO,,
reported, to our knowledge.

12
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Material characterization of (Kx,Biy)-MnOZ College of Engineering

XRD results of (KxBiy)MnO2 at various values of . Morphology of (KxBiy)I\/InO2 at various values of y
Data collected at NSLS-II, beamline 28-1D (XPD)
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Poster:
Goulart J, Guida D, and Gallaway JW, "Operando characterization of
rechargeable alkaline batteries for grid scale storage."

James Goulart
with
Dom Guida

Task 3: The effect of Bi in aqueous
MnO, systems

wl "

Dr. Andrea

Bruck
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2020 Publication

Operando Raman Spectroscopy
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Bruck; Kim; Ma; Ehrlich; Okasinski; Gallaway, "Bismuth Enables the Formation of Disordered Birnessite in Rechargeable

Alkaline Batteries." Journal of The Electrochemical Society 2020, 167 (11), 110514.

Raman shift (cm1)

Potential (V vs. Ni(OH).)

15



2021-2022 Tasks

Task 3.2 data collected at NSLS-II

Operando Quick Extended X-ray
absorption fine structure (QEXAFS)
Atomic positions around Bi atoms
Conducting data analysis currently
Also operando Raman underway

Northeastern
College of Engineering

16
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Dr. Timothy David Arnott Dr. Noah
Lambert Schorr

A e

Task 4: Structural effect of Bi doping in
alkaline CuO batteries
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2021 Publication College of Engineering

‘le,iﬁ,,;.;;;\,‘( Primary Operando energy dispersive X-ray diffraction (EDXRD)
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Schorr; Arnot; Bruck; Duay; Kelly; Habing; Ricketts; Vigil; Gallaway; Lambert, "Rechargeable Alkaline Zinc/Copper Oxide 18

Batteries." ACS Applied Energy Materials 2021, 4, 7073-7082.
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